A NEW SYNTHESIS OF SYMMETRICAL AND UNSYMMETRICAL α -DIKETONES THROUGH α -ISOCYANO- α -TOSYL KETONES 1

Daan van Leusen and Albert M. van Leusen*

Department of Organic Chemistry, The University

Nijenborgh, Groningen, The Netherlands

(Received in UK 23 September 1977; accepted for publication 6 October 1977)

In the foregoing letter a novel ketone synthesis is reported. 1b This new method is based on the <u>umpolung</u> of carbonyl reactivity 2 by using tosylmethyl isocyanide (TosMIC) as a masked formaldehyde reagent. We here wish to report the application of this principle to a new synthesis of α -diketones. Both symmetrical and, more importantly, unsymmetrical α -diketones are readily accessible by this method.

TosMIC $(\underline{1})$ has previously been shown to react with acid chlorides (or anhydrides) and base to give oxazoles (eq 1). We now find, according to expectations, that mono alkyl- and aryl-substituted TosMIC-derivatives $(\underline{2})$ can be acylated effectively to non-cyclized compounds $\underline{3}$ (eq 2). As is shown in the foregoing paper, 1b a geminal arrangement of a tosyl and an isocyano group (as in $\underline{3}$) gives access to a carbonyl function. Thus compounds $\underline{3}$ are potential precursors to α -diketones. Ample experimentation has proven the validity of this concept.

TABLE I. α -Diketones (4) Synthesized from TosMIC-derivatives (2) According to Eq 2. (New compounds marked with \dagger).

MeCOCOPh (4a) 56 $\frac{a}{4}$ PhCOCO-2-thienyl (4i) $\frac{a}{4}$ MeCOCOC ₆ H ₄ OMe-4 (4b) 57 $\frac{a}{4}$ PhCH ₂ COCOBu- $\frac{a}{4}$ (4j) $\frac{a}{4}$ + PhCH ₂ COCOAd-1 (4k) $\frac{a}{4}$ PhCOCOCH ₂ Ph $\frac{a}{4}$ (4e) 54 $\frac{a}{4}$ PhCOCOC ₆ H ₄ NO ₂ -4 (4m) $\frac{a}{4}$ PhCOCOC ₆ H ₄ NO ₂ -4 (4m) $\frac{a}{4}$ PhCOCOC ₆ H ₄ NO ₂ -4 (4m) $\frac{a}{4}$ PhCOCOC ₆ H ₄ NO ₂ -4 (4d) $\frac{a}{4}$ 51 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 29 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4}$ PhCOCOC ₆ H ₄ Me ₂ -2.2,4,6 (4h) 20 $\frac{f}{4$	0 0 R ¹ -C-C-R ²	Overall Yield $(% from 2)$
	PhCOCO-2-thienyl (41)	71
75 b + 73 c + 73 c + 74 e) 54	2 hCH $_{2}$ COCOBu- \underline{t} (4 \underline{i})	52 9
73 <u>C</u> 54 68 <u>e</u> + 51 <u>f</u> (4h)	^р hсн ₂ сосоАd-1 (4 <u>k</u>)	15 <u>h</u>
54 68 e + 51 f +	² hсн ₂ сосоРh (41)	51 <u>1</u>
68 E + 51 f + 51 f + 54h) 29 + 54	2 PhCH ₂ COCOC ₆ H ₄ NO ₂ -4 (4m)	99
51 f (4h) 29 +	+ $PhCH_2COCOC_6H_4NMe_2-4$ (4n)	53 길
59	PhCH ₂ COCOC ₆ H ₂ Me ₃ -2,4,6 (40)	22 <u>k</u>
1	+ PhCH ₂ COCO-2-thienyl (4 <u>p</u>)	$\frac{1}{67}$

3f. ^f In 63% yield from 3g. ^g Prepared in 73% yield from 3j by heating for 5 min in EtOH: conc HCl = 4: 1; oil, short path distilled from bath at 80-100°C (13 mm), 8 $_{\text{C}=0}$ 1710, 1720 cm⁻¹; quinoxaline deriv, 8 mp 90-91°C. h 0il, characterized as quinoxaline deriv, 8 mp 164°C. h As quinoxaline deriv, 4 l in 50% yield from 31; compd 4] identical with $\underline{4e}$. $\underline{\hat{J}}$ Mp $118-123^{\circ}$ C, $\frac{8}{v_{C=0}}$, $\frac{1}{15}$, 1650 cm $^{-1}$. $\frac{k}{L}$ Stirring with acid (see text) was continued for 18 h. $\frac{1}{L}$ Yield as quinoxaline deriv, $\frac{8}{L}$ mp $118-119^{\circ}$ C. distilled from bath at $120-130^{\circ}$ C (13 mm), $v_{C=0}$ 1700, 1730 cm⁻¹; quinoxaline deriv⁸ in 46%, mp $106-107^{\circ}$ C. \subseteq In 87% yield from 3d; compd 4d is identical with 4a. d Characterized as quinoxaline deriv. E In 89% yield from Arield calcd on TosMIC (1) instead of 2, i.e. including phase-transfer methylation of 1. b 0il, short path

In a typical experiment, 2-phenyl-1-tosylethyl isocyanide 4 (2 , 1 = PhCH $_2$, 5 mmol) in THF (15 ml) was lithiated with <u>n</u>-BuLi (1 equiv) at -70°C, and then acylated with 4-nitrobenzoyl chloride (1.2 equiv) at a temperature from -80°C to 20°C. Subsequently, this reaction mixture (containing crude 3) was stirred rapidly for 2.5 h with 38% aqueous HCl (2.5 ml) to give 3-phenyl-1-(4 nitrophenyl)propane-1,2-dione 4 m, mp 113 - 121°C, mainly enol form; quinoxaline derivative, mp 157 - 162°C 3 in 65% overall yield. All 4 -diketones listed in Table I (known compounds with the exception of 4 C, 4 J, 4 L and 4 D) were prepared similarly, without isolating the intermediates. In a number of cases, however, the acylated isocyanides 3 C (new compounds) were isolated and characterized (Table II), and converted separately to 4 -diketones.

TABLE II. α -Isocyano- α -Tosyl Ketones 3 $\frac{a}{2}$

	R ¹	R ²	Yield (%)	Mp(^O C) (with decomp)
<u>3d</u>	Ph	Me	72	111-113
<u>3f</u>	Ph	Ph	72	119-122
<u>3g</u>	Ph	4-0 ₂ NC ₆ H ₄	57	117-130
<u>3j</u>	PhCH ₂	<u>t</u> -Bu	54	125-128
<u>31</u>	PhCH ₂	Ph	58	98-104
<u>3m</u>	PhCH ₂	4-0 ₂ NC ₆ H ₄	77	150

 $\frac{a}{c}$ Compds $\frac{3}{3}$ are not fully stable at room temperature; nevertheless satisfactory elemental microanalysis (C,H,N,S) were obtained for 3d, j, 1, m.

The next intermediates in this reaction are the formamides $\underline{5}$, formed by acid catalyzed hydration⁶ of $\underline{3}$ (eq 3). In some cases compounds $\underline{5}$ have been detected spectroscopically, and a few of them have been isolated and characterized. For the further steps we assume elimination of \underline{p} -toluenesulfinic acid from $\underline{5}$, followed by hydrolysis of the hypothetical imine $\underline{6}$. Occasionally,

we have effected the conversion of $\underline{5}$ to $\underline{4}$ with NaOH or Na₂CO₃ also.

Further work on these reactions is in progress.

References and Notes

- 1. (a) Chemistry of Sulfonylmethyl Isocyanides 17; for part 16, see:
 - (b) O. Possel and A.M. van Leusen, Tetrahedron Lett., foregoing letter.
- 2. See 1b, ref. 5.
- 3. A.M. van Leusen, B.E. Hoogenboom, and H. Siderius, Tetrahedron Lett., 1972, 2369.
- 4. Prepared in 80% yield by phase-transfer benzylation of commercially available TosMIC ($\underline{1}$); compounds $\underline{2}$ with R¹ = Me and Et were prepared similarly in 95 and 90% yield, respectively: A.M. van Leusen, R.J. Bouma, and O. Possel, Tetrahedron Lett., $\underline{1975}$, 3478. For compd $\underline{2}$, R¹ = Ph, see: A.M. van Leusen, J. Wildeman, and O.H. Oldenziel, J. Org. Chem., $\underline{42}$, 1153 (1977).
- 5. Reported melting points 129 131° and 167°C, respectively: V. Petrov, O. Stephenson, and B. Sturgeon, J. Chem. Soc., 1953, 4066.
- 6. See 1b, ref. 8.
- 7. <u>E.g.</u> compd <u>5d</u> (R¹ = Ph, R² = Me), mp 121.5 122.5°C (decomp); v_{NH} 3350, $v_{C=0}$ 1700 br, v_{SO_2} 1310, 1140 cm⁻¹.8
- 8. Satisfactory elemental microanalysis were obtained.